THE STRUCTURE OF FACTOR III

A TRIMETHYL ISOBACTERIOCHLORIN INTERMEDIATE IN THE BIOSYNTHESIS OF VITAMIN B,,t

GERHARD MÜLLER^{*} and K. D. GNEUSS

Institut für Organische Chemie Biochemie und Isotopenforschung, Universität Stuttgart, Azenbergstrasse 18. D-7000 Stuttgart I. West Germany

H.-P. **KRIEMLER**

Z-F.F.. Cuba-Geigy AG. CH-40002. Bascl. Switzerland

and

ANTHONY J. IRWIN and A. I. SCOTT*

Department of Chemistry, Texas A & M University. College Station, TX 77843, U.S A.

(Received in U.S.A. 27 May 1980)

Abstract -Factor III, an intermediate **in corrin biosynthesis isolated from Propionihoc~frrrum shcrmunli, IS** shown to be a 3.7.20-trimethylisobacteriochlorin (20-methylsirohydrochlorin) by examination of the CMR spectrum of a biosynthetically enriched specimen derived from $[5\text{-}^{13}C]\cdot\delta$ -aminolevulinic acid and $[^{13}CH_1]$ -L-methionme. In cell-free extracts of *Clostridium tetanomorphum* the conversion of Factor III to cobyrinic acid **involves loss of C-20 together with the methioninederived methyl group attached lo this position. The imphcations of these observations, which cast a new light on the uro'gen-corrin connection. arc discussed.**

The discovery of a series of methylated isobacteriochlorins from preparations of *P. shermanii* and C. tetanomorphum has already led to a deeper understanding of the biochemical processes which connect uro'gen $III^{1,2}$ (1) with vitamin B_{12} in *rivo* and with cobyrinic acid (3) *in cirro.* On the basis of mass and UV-visible spectral analysis and of biochemical evidence, Factors $I₁³$ II^{3.4} and III⁴ were assigned the constitutions 4, 5 and 6, respectively, i.e. a mono-, diand tri-methylated isobacteriochlorin, although at the time the full structural and stereochemical details could not be determined. Subsequently, Factor II and sirohydrochlorin, the metal-free prosthetic group of nitrite-sulfite reducing enzyme, siroheme,⁵ were shown to be identical and to have the absolute stereochemistry (5) .^{6.9} By analogy and on the basis of the PMR data for the lactonic form of Factor III $(=$ corriphyrin 3), the 5-methylated isomer (6) was preferred^{8,10} for the structure of Factor III, especially since a methyl group is present in the 5-position ofthe natural corrins. Factor I, from the outset presumed to be the ring-A mono-methylated dihydroporphyrin, has recently been assigned¹¹ this structure and the stereochemistry shown in 4. The proven biochemical relationships within this series is shown in Scheme I where the experimental observation of incorporation of Factors II and III, but only the *reduced* forms of Factor I and of uro'gen III suggest that an oxido-reductase system is present in cell-free extracts which, although incapable of reducing either uro'II1 to uro'gen-III or Factor I to the tetrahydro level, can effect such reduction on administered samples of Factors II and III. The alternative explanation is that the isobacteriochlorins II and III in fact represent the physiological oxidation level of the incorporated substrates, i.e. the biochemical transformations Factor II \rightarrow Factor III \rightarrow corrin take place at the fully oxidised state which corresponds to the structure ofthese factors as isolated from the bacterial preparations. At present this point remains unresolved but obviously must be settled in order to rationalise the mechanism of the isobacteriochlorin \rightarrow corrin transformation.

We next describe the evidence for structure 7 for Factor III, which leads to a revision of the earlier postulate.^{8,10} Factor III was isolated from δ aminolevulinic acid (ALA)-supplemented cobalt-free incubations of *P. shermonii* (ATCC 9614) and from a B_{12} -deficient mutant of this organism.¹² High resolution FD mass spectrometry of the octamethyl ester established the formula $C_{51}H_{64}N_4O_{16}$ (988.4281) while the mass spectrum of the octa-ester isolated from incubation with $[methyl-²H₃]-1$. methionine exhibited peaks at m/e 997, 994, 991 and 988 corresponding to enrichment with a maximum of three $(M + 9)$ CD, groups. The presence of three such methyl groups was also confirmed by analysis of the 'H NMR spectrum recorded on a sample of Factor III methyl ester (400 μ g) prepared from a suspended cell incubation of P. *shermanii* containing $[^{13}CH_3]$ methionine and $[5^{-13}C]$ -ALA followed by esterifica tion of the metabolite and purification by HPLC. The

tDedicated lo the memory of Prof. R. B. Woodward.

Fig. 1. The 300 MHz¹H NMR spectrum (C_6D_6) of [5-¹³C]-ALA- and ¹³CH₃]-methionine enriched 20methylsiro-hydrochlorin octamethyl ester. Inset: The 20-methyl proton resonance (6 2.98 **ppm) of** 20 methylsirohydrochlorin at natural abundance.

proton spectrum (3OOMHz) of **this** 13C-enriched sample is shown in Fig. 1 where the methyl resonances at 1.5 and 1.8 ppm (\overrightarrow{CH}_3 's on sp³ carbon) are assigned provisionally to the 2 and 7 positions $(J_{H-C} = 128$ and 129 Hz) whilst a resonance at δ 2.98 (J = 127 Hz). although almost obscured in the ¹³C-enrich spectrum, is clearly discerned in the natural abundance spectrum (see inset in Fig. I) and can be assigned to $CH₃$ attached to a sp² center. Aside from clean resolution of the eight methoxy resonances of the octaester $(\delta 3.2-3.6)$ the most important features of this proton spectrum are signals at δ 6.43, 7.21 and 8.33ppm, corresponding to only *three* of the *meso*proton resonances of an isobacteriochlorin. In contrast, Factor II (5) exhibits *four* well-define signals in this region which have been assigned to the four meso-protons at C-5, C-10/C-20, and C-15 (δ 6.78, 7.36/7.46 and 8.54, respectively). Factor III must therefore be methylated at C-10 or C-20.

When this 13 C-enriched species (as the octameth ester) was examined by ¹³C NMR spectroscopy (Fig. 2), it became possible to deduce the complete structure (8). First, the *downfield* position of the C-15 mesocarbon triplet at δ 108.98 (J = 72 Hz) confirms that

rings A and B are methylated, 6 and since the mesocarbon signals at δ 89.5 and 95.4 each shown $^{13}C^{-13}C$ coupling to an enriched sp² neighbor ($J \approx 70$ Hz), these are assigned to C-5 and C-10, respectively. by analogy with the corresponding resonances in sirohydrochlorin derived by biochemical enrichment with $[5^{-13}C]$ -ALA.⁶ Thus, the remaining *meso*-carbon resonance at δ 104.8 consists of a doublet (J = 44.2 Hz) and must correspond to C-20, with additional fine structure due to long-range coupling with C-4 and C-16. That the 13 C- 13 C coupling constant of 44.2 Hz for C-20 is due to substitution by a methionine-derived methyl group is confirmed by inspection of the *methyl* region of the 13 C NMR spectrum which displays three enriched species consisting of singlets at δ 20.17 and 19.62 and a doublet at δ 18.79 (J = 44.2 Hz). It can be seen that, owing to different efficiences of incorporation of $[^{13}C]$ -methionine and of $[5^{-13}C]$ -ALA, the enrichments in the methyl groups and in the ALAderived $sp²$ carbons are not identical, the satellite intensities reflecting a greater enrichment in C-20 than in its pendant Me group.

The other $sp²$ carbon resonances (Fig. 3) were assigned as follows on the basis of the reciprocity of the

Fig. 2. The meso-carbon resonances of the proton noise decoupled ¹³C-FT spectrum of [5-¹³C]-ALA- and [¹³CH₃]-methionine labelled 20-methylsirohydrochlorin octamethyl ester. Inset: The methyl carbon resonances of the same sample. The spectrum was obtained in C_6D_6 at 75 MHz.

coupling constants with C-5, IO, 15 and **20** and by analogy with the chemical shift data for sirohydrochlorin, similarly enriched with 13C. Thus C-4 and C-9 resonate at 159.6 and 158.3 ppm, respectively, $(J_{4,5})$ $= 73$ Hz; J_{9.10} $= 77$ Hz) with additional long-rang coupling to C-20 and C-5 observed $(J_{4,20} = 5 \text{ Hz}; J_{5,10})$ $= 7.3$ Hz). A distinction can be made between the (usually) ambiguous assignment of C-14 and C-16 in this spectrum on the basis of the observed long-range coupling between C-16 and C-20 $(J = 2.8 \text{ Hz})$ observed for both enriched centers. The long-range coupling between C-10 and C-14 is not resolved. Although C-14 and C-16 have almost identical onebond coupling constants $(J_{15,16} = 73 \text{ Hz}; J_{14,15})$ $= 72$ Hz), they can be assigned to the signals at 136.5 and 132.3 ppm, respectively.

Hence Factor III is 7, i.e. 20-methylsirohydrochlorin rather than the C-5 methylated isobacteriochlorin (6), contrary to what had previously been thought.^{8,10} The absolute stereochemistry of Factor III and its relationship to cobyrinic acid was obtained by the following experiments.

Incorporation into cobyrinic acid of Factor III labelled from $[4^{-14}C]$ -ALA was demonstrated in earlier experiments using cell-free extracts of C. *tetanomorphum, 3*4* but at that time the structural assignment (now shown to be 7) had not been made. In order to trace the fate of the methyl groups during the conversion of Factor III (7) to cobyrinic acid (3), specimens of Factor II (5) and Factor III (7) were prepared from whole-cell incubations of P. shermanii using $[methyl-1~C]$ -L-methionine and $[2,3-1]$ -ALA. By this strategem, 7 is labelled as shown in Scheme 1 (\bullet = 3H ; \bullet = ${}^1{}^*C$). Taking the value of 2.00 for the methyl group number in Factor II (Experiments A: 1a, 2a, 3a, 4a, Table 1), the $^{14}C/^{3}H$ ratios in Factors III and IIIa are in good accord with the presence of three methyl groups in both of these isobacteriochlorins (Experiments A: 1 b, lc, 2b, 3b, 4c, Table l), while Factor IIa is seen to contain two such methionine-derived methyl groups (Experiment A: 4b, Table 1). The structures of Factors IIa and Illa, isomeric with Factors II and III, respectively, are under investigation (s Experimental) but their lack of incorporation into cobyrinic acid (Table I) removes them as serious contenders for intermediacy in the corrin pathway. In this connection, an isomer of Factor II (3epi-sirohydrochlorin) has recently been

Fig. 3. The proton decoupled downfield portion of the 75MHz '%FT spectrum of 20 methylsirohydrochlorin (C,D,) showing the sp' resonances associated with C-4, C-9, C-14 and C-16 enriched from [5-'³C]-Al

A: Series of incubations with cell suspensions of P. shermanii (l-4) for the preparation of ['*C/'H]-doubly labelled isobacteriochlorins from [methyl-14C] Met and [2,3-3H] ALA; isolated isobacteriochlorins were methyl esters.

B: Experiments for incorporation of the [14C/3H]-labelled isobacteriochlorins (obtained from methyl esters by 2 M piperidine hydrolysis) into cobyrinic acid by tetrapyrrole-free cell extracts from 2. tetanonorphum.

t % incorporation: 3H-radioactivity of formed cobyrinic acid/added 3tl-radioactivity of substrate x 100.

correspond to Factor IIa, since it is not a precursor of cobyrinic acid. When Factors II and III doubly labelled in this way (see Table 1) were re-incubated with the C . *tetanomorphum* cell-free system, the derived with the C. tetanomorphum cell-free system, the derived to constant, but different radioactivity ratios cobyrinic acid, obtained with excellent overall (Experiments A: 2a, 2b and 3a, 3b, Table 1). Pure cobyrinic acid, obtained with excellent overall (Experiments A: 2a, 2b and 3a, 3b, Table 1). Pure incorporation $(5-16\%)$, contains only two Factor III of Experiment 2 was mixed with

characterized by Battersby et $al.^{13}$ and may indeed methionine-derived methyl groups in each case correspond to Factor IIa, since it is not a precursor of (Experiments B: 1a-c, Table 1). In order to remove any possibility of cross contamination, separate samples of doubly labelled 5 and 7 were again chromatographed two Factor III of Experiment 2 was mixed with

sirohydrochlorin (Factor 11) from Experiment 3 (and rice *wrsa)* and the methyl esters were separated, purified and again administered (after hydrolysis) to the cobyrinic acid synthesizing system (Experiments B: 2a, 2b and 3a, 3b, Table 1). In each experiment the isolated cobyrinic acid contains a $1^4C/{}^3H$ ratio compatible with only two $14C$ Me groups. These experiments show that (a) there is no possibility of cross-contamination of Factors II and III during isolation, (b) Factor 111 is converted to cobryinic acid in good radiochemical yield $(10-15\%)$ with the loss of C-20 and its attached methyl group (the nature of the "C," fragment remains to be determined¹⁴), and (c) the absolute stereochemistry of Factor III (as 7) follows from its relationship to cobyrinic acid. These conclusions summarized in Scheme 2 have been independently confirmed by the work of the Cambridge group.¹⁷

It thus appears that, in order to achieve the intercorrin $A \rightarrow D$ ring junction, the biosynthetic route requires not only the specific formation and subsequent disruption of the type III uro'gen macrocycle but the sacrifice of at least one methioninederived methyl group and the carbon to which it is attached $(C-20)$, since both of these must be excised from the species undergoing (or having undergone) \sec corrin² closure. This apparently prodigal series of events can be accommodated within several hypotheses consonant with published data. On the assumption that the incorporation of Factor III occurs at the dihydro-level in vivo and in vitro, i.e. a reductase system is present in the cell-free extracts, one such hypothetical scheme is shown in Scheme 3 where the oxidation level of both the ejected " C_2 " unit and the substrate for this cleavage reaction are still unknown. The net result of the 1,19 secocorrin closure is to furnish a 1,19-dimethyl dehydrocorrin by an

allowed 16π conrotatory electrocyclic ring closure, thus setting the C-l and C-19 methyl groups in the correct absolute stereochemistry for eventual 1,5 shifts of C- 19 methyl to C- 17 as proposed earlier (see Scheme 4). These and related ideas are now under experimental scrutiny.¹⁸

EXPERIMENTAL

Determination of *radioactivity*. Water soluble radioactive **samples (e.g. cobyrinic acid) were measured with modified Bray's dioxan scintillator (PPD. 5g; POPOP, 0.1 g:** naphthalcne. **180g in dioxan. 1 I) using a Beckman LS250 counter; for all other samples a toluene scintillator was used (PPO, 5g; POPOP, 0.5g in tolucne, 11). For doubly labelled** $(3H; 14\tilde{C})$ samples the screening method of Tykva¹⁹ was **employed.**

 $Spectral$ *measurements.* UV-visible spectra were recorded **with a Beckman ACTA MVI** spectrophotometcr, photometric determinauons of sample **concentrations with a Carl Zeiss PMQII mstrument and FD mass spectra as described** previously.^{3,20} PMR spectra and CMR spectra with Varian FT-80 and SC-300 instruments in "100 $\frac{6}{9}$ " C₆D₆ (Merck) **distilled from calcium hydride.**

Chromorogrupli!. HPLC was performed with a Waters Associates ALC:GPC 204 instrument using C-18 μ -Bondapak columns in 80% MeOH/H₂O.

TIC for purifications and separations of Factors II, Ila and 111, llla methyl esters were carried out on Merck Silica gel (tic aluminum sheets, 20×20 cm, 0.2 mm thickness) and on **precoated cellulose plates (20 x 2Ocm. O.Smm thickness. Schleicher and Schiill G 1805; 0.1 mm thickness: tic alummum sheets, Merck). Heptamethyl cobyrinate was purified using KCN saturated solvents throughout. Column chromatographic (C.C.) purifications were performed on Merck silica gel 60 for column chromatography, 230 400 mesh (usual size: Scm x 1.5cm). The following solvent systems were used as indicated below.**

Paper electrophoresis. Cobyrinic acid was purified on **Schleicher and Schull paper Nos. 2043 and 2045 usmg the** following KCN saturated buffers:

(a) Buffer pH 2.7. 0.5 M acetic actd,

(b) Buffer pH 8.6, 0.01 M veronal

RruRenrs. Adenosinc-5'-triphosphatc tryst. di-sodmm salt x 3H,O (Boehringer. Mannheim); S-Adenosyl-Lmethionine HSO₄ (Boehringer, Mannheim): 5-**Amirolevulinic acid 'HCI (prepared by a method of** Zav'yalov et al.²¹); [2,3-³H]-5-Aminolevulinic acid (specific activity 28 mCt_/umol) (Isotopendienst West, Frankfurt); [4-¹⁴C]-5-Aminolevulmic acid (specific activity 59 μ Ci/ μ mol **(Isotopendtenst West, Frankfurt);** t_-Cysteine **HCI (Serva Fembiochemica, Hetdelberg); Cobyrinic acid (prepared from** acid methanolysis of vitamin B₁₂ followed by hydrolysis); L-**Glutathione (red) (Serva Fembiochemica. Heidelberg); t-**Methionine (Merck. Darmstadt), [Me-¹⁴C]-L-methionine (specific activity $56 \mu \text{Cu/mol}$) (Amersham; Buchler, **Braunschweig); [Me-'H,,]-u,t.-methionine (prepared as** described in l.c.²²); *f*-nicotinamide-adenine-dinucleot reduced form, di-sodium salt (Boehringer, Mannheim); β **nicotmamtde-adcnine-dinuclcotide. oxidized form, free acid** (Boehringer, Mannheim); Vitamin B₁₂ (Merck, Darmstadt).

Incubations with cell suspensions of P. shermanii. Freshly harvested wet cells (90 g) of *P. shermanii*^{3,4,20} were suspended **in degassed. mtrogen saturated 52 mM phosphate bulfer, pH 7.7 (300 ml). 5-Aminolevulinic acid hydrochloride (20 mp;** 0.12 mmole) and L-methionine (4 mg; 27μ mole) were added before and after 20 hr of incubation which was continued for a **further 20 hr, with regular pH adjustment (to 7.7).**

Isolation of the tetrapyrrolic methyl esters. The pH of the above cell suspension was adjusted to 7.8 to avoid **formation of the lactones of Factors II and III and after**

Isolation and Purification of Methylated Isobacteriochlorins from P. shermanii or C. tetanomorphum.

centrifugation Sephadex DEAE A-25 (previously washed with degassed phosphate buffer pH 7.7 (52 mM) was added to the supernatant. After 2-3 hr the Sephadex was filtered, washed with degassed distilled water and dried with MeOH (2OOml). The residue was freeze-dried and suspended in MeOH/H₂SO₄ (95:5: v/v: 100 ml) and allowed to stand (in the dark) at room temp for 24 hr. Addition of CHCI, (20ml) and aqueous NaHCO,, followed by extraction of the aqueous layer with CHCl₃ (3 \times 20 ml), drying (Na₂SO₄) and evaporation of solvent afforded a mixture of tetrapyrrole methyl esters which were purifed and separated on small sihca gel 60 columns (5 cm \times 1.5 cm) and by tic using solvent systems as shown above. The structures of factors IIa and llla are under further investigation.

Isolation and purification of the isobacteriochlorin methyl *esters.* The procedure is described in Scheme 5 where F II. III, etc. refer to methyl esters of Factors II, 111. etc.

Chromatographic separation of the methyl esters of factors II, Ila. III und IIIa und *rheir y-mono- und* **di-/acrones on siliru me/.** The chromatographic steps as well as the *R,* values of the single compounds are summarized in Table $\acute{2}$. The methyl esters of the isobacteriochlorins were first separated on precoated silica gel plates using solvent system 1 and then rechromatographed several times. The bands containing the methyl esters of Factors Ila and Illa and II and III as well as their y-mono- and di-lactones were scraped carefully and eluted wtth chloroform/methanol (99: 1; v/v). It **is** necessary to chromatograph the isobacteriochlorin bands on silica gel using solvent system II m order to separate them from the traces of porphyrm esters. All the above chromatographic steps were carried out m subdued hght. The isolated isobacteriochlorin methyl esters are blue-violet in soln and show strong orange fluorescent under long-wave UV light (366 nm).

Separation of factor II and III methyl esters. Traces of silica gel were separated by solution in CH,CI, and filtration. The ester mixture was then chromatographed on precoated cellulose plates (Schleicher and Schull, 0.5 mm) using solvent system III and/or on precoated silica gel 60 aluminum sheets (Merck, 0.2mm) using solvent system VI. In both cases Factor II methyl ester (orange fluorescence) runs just ahead of Factor 111 methyl ester (red fluorescence).

The pigments were purified by rechromatography on silica gel plates using solvent systems I **or II.**

Preparation of $[{}^3H, {}^1{}^4C]$ -labelled isobacteriochlorins. The freshly harvested wet cells (9Og) were suspended in nitrogen phosohate buffer (52 mM) at pH 7.7. 5-Aminolevulinic acid (40 mg; 0.24 mmol) and L-methionine (8 mg; 54 μ mol) plus [2,3- $^{\circ}$ H]-5-aminolevulmic acid and [Me- $^{\circ}$ C]-L-methion were added to the suspension (Table 1). The added radioactivities of the labelled substrates are summarized in Table I; the specific radioactivities are summarized under reagents. The radioactive labelled pigments were purified to constant specific activities using the tic systems described above.

Incorporufion experiments ro /arm cobyrinrc acid wirh *porphyrinogen-jree cell extracts of C.* tetanomorphum. Porphyrinogen-free cell extracts of C. *tetanomorphum*^{3,4} *(40* ml) were used for each experiment (Table I). S-adenosylt-methionine (5mg; $10~\mu$ mol), glutathione (reduced; 4mg; 13 μ mol). ATP (7mg; 13.8 μ mol). NAD (3mg; 4.5 μ mol). NADH (6 mg; 8.5 μ mol) and 1-cysteine (1 mg; 5.7 μ mol) were dissolved in buffer and added to the soln together with aqueous $Co(NO₃)₂$ soln (0.5 ml; 39 mM). After the addition of the radioactive labelled substrates, obtained from their methyl esters by hydrolysis in 2 ml degassed 2 M piperidine soln (8 hr. 4;). evaporation of the piperidine-water mixture *in cucuo* and dissolution of residue in a few ml distilled and degassed water. the suspension was incubated in the dark at 37 , **for** 20 hr under N,.

Isolation *and purifcution of cobyrinic ucid.* Unlabelled cobyrinic acid (957 μ g; 0.92 μ mol). KCN soln (1 ml; 1 M; pH 7.8) and glacial AcOH were added to the suspension after incubation. The suspension was allowed to stand for 15 min at 4° . The cobyrinic acid was isolated from the incubation media by DEAE-fixation⁴ and esterified with 50ml MeOH/HSO₄ (95:5; v/v). The cobester was extracted with chloroform and purified by the following procedure.

Methylesters of	TLC on silica gel 60 system I	TLC on silica gel 60 system II	TLC on cellulose system III	TLC on silica gel 60 system VI
Coproporphyrin	0.59	0.75	0.80	0.55
Pentacarboxyporphyrin	0.49	0.61		0.49
Hexacarboxyporphyrin	0.39	0.50		0.44
Heptacarboxyporphyrin	0.30	0.38	0.21	0.39
Uroporphyrin	0.19	$\mathbf 0$	0	0.34
Factor IIa	0.30	0.48	0.54 ⁻¹	0.31
Factor IIIa	0.30	0.48	0.60	0.31
Factor II	0.29	0.46	0.40 ["]	0.31
Factor III	0.29	0.46	0.20	0.25
Factor-II-y-monolacton	0.25	0.39		0.30
Factor-III-y-monolacton	0.20	0.31	broad badly separated bands from 0.1 to 0.2	0.31
Factor-II-y-monolacton	0.18	0.29		0.29
Factor-II-y-dilacton	0.15	0.24		0.28
Factor-III-y-dilacton	0.14	0.24		0.25

Table 2. Estimated R_i values in solvent systems used for the separation of the methylesters from porphyrins and isobacteriochlorins isolated from incubations with cell suspensions of *P. shermunii*

t **Merck, aluminum sheets, 0.1 mn**

****Schleicher and Schiill. G 1805. 0.5 mn**

(I) Chrom AR sheet 1000 (Malinckrodt), solvent system 1. Porphyrin methyl esters and starting substrates were separated from cobester which remained at the origin.

(2) Silica gel tic plates, solvent system II (saturated with KCN). The \overline{R}_f value of cobester is 0.4. The cobester band was scraped off, eluted with $CHCl₃/MeOH$ (99:1; v/v) and evaporated in vacuo. To separate traces of silica gel the cobester was dissolved in $CH₂Cl₂$ and filtered through a cotton plug. The cobester was then hydrolysed with 2ml degassed $\bar{2}$ M piperidine soln for 24 hr at 4° . The piperidine-water mixture was evaporated under vacuum and cobyrinic acid dissolved in a small amount of distilled water, containing 5% HCN, and electrophoresis of the cobyrinic acid was carried out at pH 8.6. Thereafter the cobyrinic acid band was eluted wtth HCN-containing distilled water, and after evaporation of water an electrophoresis at pH 2.7 was carried out.

In order to control the radiochemical purity of the isolated cobyrinic acid, the radioactive distribution was measured along the electropherogram and the specific radioactivity of cobyrinic acid determined after each electrophoresis.²⁰

The results of the incorporation data are given in Table 1. Preparation of ¹³C-labelled 20-methylsirohydrochlorin. δ - $[5^{-13}C]$ -aminolevulinic acid (90 atom $\%$, 100 mg) and ¹³CH₃-L-methionine (Merck, 90 atom $\%$, 100 mg) were incubated for 50hr with P. shermanii (ATCC 9614). The mixture was then centrifuged (2O,OOOg, 20min) and the supematant was filtered through DEAE cellulose (Whatman DE-23, IOgm) which had been previously equilibrated with 0.02 M potassium phosphate buffer pH 7.6. The cellulose was freeze-dried and then stirred for 18 hr in the dark under argon with MeOH (250 ml) containing 5% HSO₄. The solution was poured into $CHCl₃$ (250 ml and neutralized with sat NaHCO, aq. The aqueous phase was extracted several times with CHCI₃ and the combined organic layers were dried (NaSO,) and evaporated. The residue was chromatographed (TLC) using benzene-EtOH-MeOH $(80:16:4)$. The fluorescent orange band at R_f 0.6 was eluted (10% MeOH in benzene) and subjected to hpic purification using a Waters C-18 μ -Bondapak column in 80 $\%$ MeOH/water. The two main fractions consisting of sirohydrochlorin and 20-methylsirohydrochlorin octamethyl esters were collected. The latter was rechromatographed on the same column in 70% acetonitrile/ H_2O to remove a trace impurity not resolved in the MeOH/water system. Collected fractions were evaporated in the dark at $< 50^{\circ}$ and used directly for the NMR experiments.

Acknowledgments--We thank the National Institutes of Health (Grant AM 20528). the Robert A. Welch Foundation and Deutsche Forschungsgemeinschaft for generous support of this work and Prof. K. L. Rinehart, Jr. and Mr. J. Carter Cook, Jr. (Illinois) for high resolution FD mass spectra. Highfield NMR spectra were recorded at the University of Utah through the courtesy of Prof. D. Grant (N.I.H. Grant RR00575-07).

REFERENCES

- ¹A. I. Scott, N. Georgopapadakou, K. S. Ho, S. Klioze, E. Lee, S. L. Lee, G. H. Temme, III, C. A. Townsend and I. M. Armitage, J. Am. Chem. Soc. 97, 2548 (1975), and refs cited; A. R. Battersby, M. Ihara, E. McDonald, F. Satoh and D. C. Williams, J. Chem. Soc., Chem. Commun. 436 (1975); H. O. Dauner and G. Müller, Hoppe-Seyler's Z. Phys. Chem. 356, 1353 (1975).
- ²Reviews: A. I. Scott, Tetrahedron 31, 2639 (1975); Phil. Trans. R. Soc. London, Ser. B 273, 303 (1976); Acc. Chem. Res. 11, 29 (1978); D. G. Buckley, Annu. Rep. Chem. Soc. London, Ser. B. 74, 392 (1977).
- ³R. Dceg, H.-P. Kriemler, K.-H. Bergmann and G. Müller, Hoppe-Seyler's Z. Phys. Chem. 358, 339 (1977).
- ⁴K.-H. Bergmann, R. Deeg, K. D. Gneuss, H.-P. Kriemler and G. Müller, *Ibid.* 358, 1315 (1977).
- ⁵L. M. Siegel, M. J. Murphy and H. Kamin, J. Biol. Chem. 24% 1.51 (1973): M. J. Murphy and L. M. Siegel. *Ibid.* 248, 691 I (1973).
- 'A. 1. Scott, A. J. Irwin and L. M. Siegel, *Porphyrin Chemisrr) Adaances* (Edited by F. R. Longo), p. 143. Ann Arbor Science, Ann Arbor, Michigan, (1979). Abstracts of the Porphyrin Symposium of the Middle Atlantic Regional Meeting of the American Chemical Society, University of Delaware, April (1977); A. I. Scott, A. J. Irwin, L. M. Siegel and J. N. Shoolery, J. *Am. Chem. Sot. 100, 316.7987* (1978). ⁷V. Ya. Bykhovsky, N. J. Zaitseva and V. N. Bukin, Dokl.
- *Akad. Sci. SSSR 224, 1431 (1975).*
- "A. R. Battersby, E. McDonald, R. H. Morrts, M. Thompson, D. C. Williams, V. Ya. Bykhovsky, N. J. Zaitseva and V. N. Bukin, *Tetrahedron Letters* 2217 (1977). ⁹A. R. Battersby, E. McDonald, M. Thompson and V. Ya.
- Bykhovsky, *J. Chem. Soc.*, Chem. Commun. 150 (1978). ¹⁰A. R. Battersby and E. McDonald, Bioorg. Chem. 7, 161 (1978).
- 11 Factor I has recently been shown to have structure 4. M. Imfeld, D. Arigoni, R. Deeg and G. Müller, Vitamin B_{12} (Edited by **B-** Zagalak anh W. Friedrich), p. 315. de Gruyter, Berlin (1979).
- ¹² Unpublished work by Drs. D. Schneider, M. M. Schneider and S. Hosozawa.
- ¹³A. R. Battersby, E. McDonald, R. Neier and M. Thompson, *J. Chem. Sot..* Chem. Commun. 960 (1979).
- ¹⁴In earlier experiments it was clearly shown^{1a, 15} that, under carefully controlled conditions, $[^{14}C]$ -formaldehyde could be trapped from the C-20 position of uro'gen III. The data can be interpreted in several ways: (a) methylation at C-20 is followed by loss of a "C₂" unit which is further cleaved to "C." units. one of which is trapped as formaldehyde; (b) the units, one of which is trapped as formaldehyde; (b) the formaldehyde is released (under enzymic control¹⁶) only from the uro'gen III molecule and nor from Factor Ill; (c) more than one oathwav exists for the biotransformation of uro'gen III to cobyrinic acid.
- ¹⁵M. Kajiwara, K. S. Ho, H. Klein, A. I. Scott, A. Gossauer, J. Engel, E. Neumann and H. Zilch, Bioorg. Chem. 6, 397 (1977).
- ¹⁶This interpretation would entail the fortuitous correspondence of the stoichiometry of formaldehyde release $(3\frac{\dot{\gamma}}{6})$ from ¹⁴C-20 and bioconversion of the ¹⁴C-5 and ¹⁴C-15 labels in uro'gen III to these posittons in cobyrinic acid $({\sim}3\%)$ ¹⁵
- ¹⁷A. R. Battersby, G. W. J. Matcham, E. McDonald, R. Neier. M. Thompson, W.-D. Woggon and V. Ya. Bykhovsky, J. *Chem. Sot.* Chem. Commun. 185 (1979); N. G. Lewis, R. Neier, G. W. J. Matcham, E. McDonald and A. R. Battersby, *Ibid.* Chem. Comm. 541 (1979); cf A. R. Battersby. *Vitamin B,,* (Edited by B. Zagalak and W. Friedrich), p. 217. de Gruyter, Berlin (1979).
- ¹⁸Preliminary accounts of this work have been published: G. Muller, K. D. Gneuss, H.-P. Kriemler, A. 1. Scott and A. J. Irwin. *J. Am. Chem. Sot.* **101,** 3655 (1979); A. I. Scott. *Vitamin* B_{12} (Edited by B. Zagalak and W. Friedrich), p. 247. de Gruyter, Berlin (1979). G. Milller, R. Deeg, K. D. Gneuss, G. Gunzcr and H.-P. Kriemier, *Ibid.* p. 279.
- ¹⁹R. Tykva, *Application of Isotopes in Organic Chemistry and Biochemrstry,* Vol. 2 (Edited by H. Simon), p. 205. Springer-Verlag, New York, (1974).
- ²⁰H.-O. Dauner and G. Müller, *Hoppe-Seyler's Z. Phys.* Chem. 356, 1353 (1975).
- ²¹S. J. Zav'yalov, N. J. Aronova, N. N. Makhova and Yu. B. Vol'kenstein, Bull. *Acad. Sci. USSR, Div. Chem. Sci.* 22, 632 *(1973).*
- *"II B* Melville, J. R. Rachelle and E. B Keller, *J. Bwl. Chem.* 189,'419 (1947).

Note added in press. 'The "missing" C-2 fragment has been identified as acetic acid by independent work in our laboratory (with A. J. Irwin and I. Ichinose) and in Cambridge. Zurich, and Stuttgart. We thank Professors A. R. Battersby, D. Arigoni and G. Miiller for informing us of their work, and Professor A. Eschenmoser for communicating his results on a model system which generates corrins from isobacteriochlorin via "Acetate extrusion."'